The fundamental problems are boiled to zero eigenvalue solutions and all their jordan normal form and non - zero eigenvalue solutions 将问题归结为零本征值本征解和非零本征值本征解问题。
5 . the solution of this dissertation is different from one of the system of dual vectors in which the solution of zero eigenvalue is corresponding with saint - venant ' s solution 与对偶向量体系采用零特征的解对应圣维南解不同,本文采用微分算子解法,将2维弹性力学的解进行分解。
Based on the zero eigenvalue solutions and non - zero eigenvalue solutions of the problem of viscoelastic cylinders , as particular example , kelvin model ' s creep and maxwell model ' s stress relaxation are studied for the simple extension . the numerical results show that the model is reasonable , which is in agreement with viscoelastic characteristics 在得到粘弹性柱体问题的零本征值和非零本征值解析解的基础上,作为特例讨论了粘弹性柱体单向拉伸问题的kelvin模型的蠕变现象以及maxwell模型的应力松弛现象。
For viscous shock waves c , by the spectral analysis we prove that in l2 ( r ) space the essential spectra and the eigenvalues ( except the simple zero eigenvalue ) of the linearized operator have negative real parts , thus we show that the viscous shock waves c is locally asymptotically exponentially stable in l2 ( r ) space 对粘性冲击波c利用类似方法,我们证得在l ~ 2 ( r )空间线性化算子的本质谱和除简单特征值零以外的特征值均具有负实部。于是,我们得到粘性冲击波c在l ~ 2 ( r )空间的局部渐近指数稳定。
By choosing some appropriate exponential weight functions we prove that the essential spectra and the eigenvalues ( except the simple zero eigenvalue ) have negative real parts , thus we get the locally asymptotically exponential stability of travelling waves ( al ) and ( a2 ) in some weighted spaces 通过选用合适的权函数,我们证得在加权空间线性化算子的本质谱和除简单特征值零以外的特征值均具有负实部。因此,我们得到行波( a1 ) , ( a2 )在加权的l ~ 2 ( r )空间的局部渐近指数稳定。